Source code for engine.justplotit

from bokeh.plotting import show
from bokeh.plotting import figure as Figure
from bokeh.io import output_file as outputfile
from bokeh.io import output_notebook  as outnotebook
import pickle as pk
import numpy as np
from bokeh.layouts import row
import pandas as pd
[docs] def jwst_1d_spec(result_dict, model=True, title='Model + Data + Error Bars', output_file = 'data.html',legend = False, R=False, num_tran = False, plot_width=800, plot_height=400,x_range=[1,10],y_range=None, plot=True, output_notebook=True): """Plots 1d simulated spectrum and rebin or rescale for more transits Plots 1d data points with model in the background (if wanted). Designed to read in exact output of run_pandexo. Parameters ---------- result_dict : dict or list of dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. model : bool (Optional) True is default. True plots model, False does not plot model title : str (Optional) Title of plot. Default is "Model + Data + Error Bars". output_file : str (Optional) name of html file for you bokeh plot. After bokeh plot is rendered you will have the option to save as png. legend : bool (Optional) Default is False. True, plots legend. R : float (Optional) Rebin data from native instrument resolution to specified resolution. Dafult is False, no binning. Here I adopt R as w[1]/(w[2] - w[0]) to maintain consistency with `pandeia.engine` num_tran : float (Optional) Scales data by number of transits to improve error by sqrt(`num_trans`) plot_width : int (Optional) Sets the width of the plot. Default = 800 plot_height : int (Optional) Sets the height of the plot. Default = 400 y_range : list of int (Optional) sets y range of plot. Defaut is +- 10% of max and min x_range : list of int (Optional) Sets x range of plot. Default = [1,10] plot : bool (Optional) Supresses the plot if not wanted (Default = True) out_notebook : bool (Optional) Output notebook. Default is false, if true, outputs in the notebook Returns ------- x,y,e : list of arrays Returns wave axis, spectrum and associated error in list format. x[0] will be correspond to the first dictionary input, x[1] to the second, etc. Examples -------- >>> jwst_1d_spec(result_dict, num_tran = 3, R = 35) #for a single plot If you wanted to save each of the axis that were being plotted: >>> x,y,e = jwst_1d_data([result_dict1, result_dict2], model=False, num_tran = 5, R = 100) #for multiple See Also -------- jwst_noise, jwst_1d_bkg, jwst_1d_flux, jwst_1d_snr, jwst_2d_det, jwst_2d_sat """ outx=[] outy=[] oute=[] TOOLS = "pan,wheel_zoom,box_zoom,reset,save" if output_notebook & plot: outnotebook() elif plot: outputfile(output_file) colors = ['black','blue','red','orange','yellow','purple','pink','cyan','grey','brown'] #make sure its iterable if type(result_dict) != list: result_dict = [result_dict] if type(legend)!=bool: legend_keys = legend legend = True if type(legend_keys) != list: legend_keys = [legend_keys] i = 0 for dictt in result_dict: ntran_old = dictt['timing']['Number of Transits'] to = dictt['timing']["Num Integrations Out of Transit"] ti = dictt['timing']["Num Integrations In Transit"] #remove any nans y = dictt['FinalSpectrum']['spectrum_w_rand'] x = dictt['FinalSpectrum']['wave'][~np.isnan(y)] err = dictt['FinalSpectrum']['error_w_floor'][~np.isnan(y)] y = y[~np.isnan(y)] if (R == False) & (num_tran == False): x=x y=y elif (R != False) & (num_tran != False): new_wave = bin_wave_to_R(x, R) out = uniform_tophat_sum(new_wave,x, dictt['RawData']['electrons_out']*num_tran/ntran_old) inn = uniform_tophat_sum(new_wave,x, dictt['RawData']['electrons_in']*num_tran/ntran_old) vout = uniform_tophat_sum(new_wave,x, dictt['RawData']['var_out']*num_tran/ntran_old) vin = uniform_tophat_sum(new_wave,x, dictt['RawData']['var_in']*num_tran/ntran_old) var_tot = (to/ti/out)**2.0 * vin + (inn*to/ti/out**2.0)**2.0 * vout if dictt['input']['Primary/Secondary']=='fp/f*': fac = -1.0 else: fac = 1.0 rand_noise = np.sqrt((var_tot))*(np.random.randn(len(new_wave))) raw_spec = (out/to-inn/ti)/(out/to) sim_spec = fac*(raw_spec + rand_noise ) x = new_wave y = sim_spec err = np.sqrt(var_tot) elif (R == False) & (num_tran != False): out = dictt['RawData']['electrons_out']*num_tran/ntran_old inn = dictt['RawData']['electrons_in']*num_tran/ntran_old vout = dictt['RawData']['var_out']*num_tran/ntran_old vin = dictt['RawData']['var_in']*num_tran/ntran_old var_tot = (to/ti/out)**2.0 * vin + (inn*to/ti/out**2.0)**2.0 * vout if dictt['input']['Primary/Secondary']=='fp/f*': fac = -1.0 else: fac = 1.0 rand_noise = np.sqrt((var_tot))*(np.random.randn(len(x))) raw_spec = (out/to-inn/ti)/(out/to) sim_spec = fac*(raw_spec + rand_noise ) x = x y = sim_spec err = np.sqrt(var_tot) elif (R != False) & (num_tran == False): new_wave = bin_wave_to_R(x, R) out = uniform_tophat_sum(new_wave,x, dictt['RawData']['electrons_out']) inn = uniform_tophat_sum(new_wave,x, dictt['RawData']['electrons_in']) vout = uniform_tophat_sum(new_wave,x, dictt['RawData']['var_out']) vin = uniform_tophat_sum(new_wave,x, dictt['RawData']['var_in']) var_tot = (to/ti/out)**2.0 * vin + (inn*to/ti/out**2.0)**2.0 * vout if dictt['input']['Primary/Secondary']=='fp/f*': fac = -1.0 else: fac = 1.0 rand_noise = np.sqrt((var_tot))*(np.random.randn(len(new_wave))) raw_spec = (out/to-inn/ti)/(out/to) sim_spec = fac*(raw_spec + rand_noise ) x = new_wave y = sim_spec err = np.sqrt(var_tot) else: print("Something went wrong. Cannot enter both resolution and ask to bin to new wave") return x = np.array(x,dtype=float) y = np.array(y,dtype=float) err= np.array(err,dtype=float) #create error bars for Bokeh's multi_line and drop nans data = pd.DataFrame({'x':x, 'y':y,'err':err}).dropna() y_err = [] x_err = [] for px, py, yerr in zip(data['x'], data['y'], data['err']): np.array(x_err.append((px, px))) np.array(y_err.append((py - yerr, py + yerr))) #initialize Figure if i == 0: #Define units for x and y axis y_axis_label = dictt['input']['Primary/Secondary'] if y_axis_label == 'fp/f*': p = -1.0 else: y_axis_label = y_axis_label if dictt['input']['Calculation Type'] =='phase_spec': x_axis_label='Time (secs)' x_range = [min(x), max(x)] else: x_axis_label='Wavelength [microns]' if y_range!=None: ylims = y_range else: ylims = [min(dictt['OriginalInput']['model_spec'])- 0.1*min(dictt['OriginalInput']['model_spec']), 0.1*max(dictt['OriginalInput']['model_spec'])+max(dictt['OriginalInput']['model_spec'])] fig1d = Figure(x_range=x_range, y_range = ylims, width = plot_width, height =plot_height,title=title,x_axis_label=x_axis_label, y_axis_label = y_axis_label, tools=TOOLS, background_fill_color = 'white') #plot model, data, and errors if model: mxx = dictt['OriginalInput']['model_wave'] myy = dictt['OriginalInput']['model_spec'] my = uniform_tophat_mean(x, mxx,myy) model_line = pd.DataFrame({'x':x, 'my':my}).dropna() fig1d.line(model_line['x'],model_line['my'], color=colors[i],alpha=0.2, line_width = 4) if legend: fig1d.circle(data['x'], data['y'], color=colors[i], legend = legend_keys[i]) else: fig1d.circle(data['x'], data['y'], color=colors[i]) outx += [data['x'].values] outy += [data['y'].values] oute += [data['err'].values] fig1d.multi_line(x_err, y_err,color=colors[i]) i += 1 if plot: show(fig1d) return outx,outy,oute
[docs] def bin_wave_to_R(w, R): """Creates new wavelength axis at specified resolution Parameters ---------- w : list of float or numpy array of float Wavelength axis to be rebinned R : float or int Resolution to bin axis to Returns ------- list of float New wavelength axis at specified resolution Examples -------- >>> newwave = bin_wave_to_R(np.linspace(1,2,1000), 10) >>> print(len(newwave)) 11 """ wave = [] tracker = min(w) i = 1 ind= 0 firsttime = True while(tracker<max(w)): if i <len(w)-1: dlambda = w[i]-w[ind] newR = w[i]/dlambda if (newR < R) & (firsttime): tracker = w[ind] wave += [tracker] ind += 1 i += 1 firsttime = True elif newR < R: tracker = w[ind]+dlambda/2.0 wave +=[tracker] ind = (np.abs(w-tracker)).argmin() i = ind+1 firsttime = True else: firsttime = False i+=1 else: tracker = max(w) wave += [tracker] return wave
[docs] def uniform_tophat_sum(xnew,x, y): """Adapted from Mike R. Line to rebin spectra Takes sum of group of points in bin of wave points Parameters ---------- xnew : list of float or numpy array of float New wavelength grid to rebin to x : list of float or numpy array of float Old wavelength grid to get rid of y : list of float or numpy array of float New rebinned y axis Returns ------- array of floats new y axis Examples -------- >>> oldgrid = np.linspace(1,3,100) >>> y = np.zeros(100)+10.0 >>> newy = uniform_tophat_sum(np.linspace(2,3,3), oldgrid, y) >>> newy array([ 240., 250., 130.]) """ xnew = np.array(xnew) szmod=xnew.shape[0] delta=np.zeros(szmod) ynew=np.zeros(szmod) delta[0:-1]=xnew[1:]-xnew[:-1] delta[szmod-1]=delta[szmod-2] #pdb.set_trace() for i in range(szmod-1): i=i+1 loc=np.where((x >= xnew[i]-0.5*delta[i-1]) & (x < xnew[i]+0.5*delta[i])) ynew[i]=np.sum(y[loc]) loc=np.where((x > xnew[0]-0.5*delta[0]) & (x < xnew[0]+0.5*delta[0])) ynew[0]=np.sum(y[loc]) return ynew
[docs] def uniform_tophat_mean(xnew,x, y): """Adapted from Mike R. Line to rebin spectra Takes average of group of points in bin Parameters ---------- xnew : list of float or numpy array of float New wavelength grid to rebin to x : list of float or numpy array of float Old wavelength grid to get rid of y : list of float or numpy array of float New rebinned y axis Returns ------- array of floats new y axis Examples -------- >>> oldgrid = np.linspace(1,3,100) >>> y = np.zeros(100)+10.0 >>> newy = uniform_tophat_sum(np.linspace(2,3,3), oldgrid, y) >>> newy array([ 240., 250., 130.]) """ xnew = np.array(xnew) szmod=xnew.shape[0] delta=np.zeros(szmod) ynew=np.zeros(szmod) delta[0:-1]=xnew[1:]-xnew[:-1] delta[szmod-1]=delta[szmod-2] #pdb.set_trace() for i in range(szmod-1): i=i+1 loc=np.where((x >= xnew[i]-0.5*delta[i-1]) & (x < xnew[i]+0.5*delta[i])) ynew[i]=np.mean(y[loc]) loc=np.where((x > xnew[0]-0.5*delta[0]) & (x < xnew[0]+0.5*delta[0])) ynew[0]=np.mean(y[loc]) return ynew
[docs] def jwst_1d_flux(result_dict, plot=True, output_file= 'flux.html'): """Plot flux rate in e/s Parameters ---------- result_dict : dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. plot : bool (Optional) True renders plot, Flase does not. Default=True output_file : str (Optional) Default = 'flux.html' Return ------ x : numpy array micron y : numpy array 1D flux rate in electrons/s See Also -------- jwst_1d_spec, jwst_1d_bkg, jwst_noise, jwst_1d_snr, jwst_2d_det, jwst_2d_sat """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" out = result_dict['PandeiaOutTrans'] # Flux 1d x, y = out['1d']['extracted_flux'] x = x[~np.isnan(y)] y = y[~np.isnan(y)] plot_flux_1d1 = Figure(tools=TOOLS, x_axis_label='Wavelength [microns]', y_axis_label='Flux (e/s)', title="Out of Transit Flux Rate", width=800, height=300) plot_flux_1d1.line(x, y, line_width = 4, alpha = .7) if plot: outputfile(output_file) show(plot_flux_1d1) return x,y
[docs] def jwst_1d_snr(result_dict, plot=True, output_file='snr.html'): """Plot SNR Parameters ---------- result_dict : dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. plot : bool (Optional) True renders plot, Flase does not. Default=True output_file : str (Optional) Default = 'snr.html' Return ------ x : numpy array micron y : numpy array 1D SNR See Also -------- jwst_1d_bkg, jwst_noise, jwst_1d_flux, jwst_1d_spec, jwst_2d_det, jwst_2d_sat """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" # Flux 1d x= result_dict['RawData']['wave'] electrons_out = result_dict['RawData']['electrons_out'] y = electrons_out/np.sqrt(result_dict['RawData']['var_out']) x = x[~np.isnan(y)] y = y[~np.isnan(y)] plot_snr_1d1 = Figure(tools=TOOLS, x_axis_label='Wavelength (micron)', y_axis_label='SNR', title="SNR Out of Trans", width=800, height=300) plot_snr_1d1.line(x, y, line_width = 4, alpha = .7) if plot: outputfile(output_file) show(plot_snr_1d1) return x,y
[docs] def jwst_1d_bkg(result_dict, plot=True, output_file='bkg.html'): """Plot background Parameters ---------- result_dict : dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. plot : bool (Optional) True renders plot, Flase does not. Default=True output_file : str (Optional) Default = bkt.html Return ------ x : numpy array micron y : numpy array 1D bakground e/s See Also -------- jwst_1d_spec, jwst_noise, jwst_1d_flux, jwst_1d_snr, jwst_2d_det, jwst_2d_sat """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" # BG 1d out = result_dict['PandeiaOutTrans'] x, y = out['1d']['extracted_bg_only'] y = y[~np.isnan(y)] x = x[~np.isnan(y)] plot_bg_1d1 = Figure(tools=TOOLS, x_axis_label='Wavelength [microns]', y_axis_label='Flux (e/s)', title="Background", width=800, height=300) plot_bg_1d1.line(x, y, line_width = 4, alpha = .7) if plot: outputfile(output_file) show(plot_bg_1d1) return x,y
[docs] def jwst_noise(result_dict, plot=True, output_file= 'noise.html'): """Plot background Parameters ---------- result_dict : dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. plot : bool (Optional) True renders plot, Flase does not. Default=True output_file : str (Optional) Default = 'noise.html' Return ------ x : numpy array micron y : numpy array 1D noise (ppm) See Also -------- jwst_1d_spec, jwst_1d_bkg, jwst_1d_flux, jwst_1d_snr, jwst_2d_det, jwst_2d_sat """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" #saturation x = result_dict['FinalSpectrum']['wave'] y = result_dict['FinalSpectrum']['error_w_floor']*1e6 x = x[~np.isnan(y)] y = y[~np.isnan(y)] ymed = np.median(y) plot_noise_1d1 = Figure(tools=TOOLS,#responsive=True, x_axis_label='Wavelength (micron)', y_axis_label='Error on Spectrum (PPM)', title="Error Curve", width=800, height=300, y_range = [0,2.0*ymed]) ymed = np.median(y) plot_noise_1d1.circle(x, y, line_width = 4, alpha = .7) if plot: outputfile(output_file) show(plot_noise_1d1) return x,y
[docs] def jwst_2d_det(result_dict, plot=True, output_file='det2d.html'): """Plot 2d detector image Parameters ---------- result_dict : dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. plot : bool (Optional) True renders plot, Flase does not. Default=True output_file : str (Optional) Default = 'det2d.html' Return ------ numpy array 2D array of out of transit detector simulation See Also -------- jwst_1d_spec, jwst_1d_bkg, jwst_1d_flux, jwst_1d_snr, jwst_noise, jwst_2d_sat """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" out = result_dict['PandeiaOutTrans'] data = out['2d']['detector'] if 'miri' in result_dict['input']['Instrument']: width=300 height=800 else: width=800 height=300 xr, yr = data.shape plot_detector_2d = Figure(tools="pan,wheel_zoom,box_zoom,reset,hover,save", x_range=[0, yr], y_range=[0, xr], x_axis_label='Pixel', y_axis_label='Spatial', title="2D Detector Image", width=width, height=height) plot_detector_2d.image(image=[data], x=[0], y=[0], dh=[xr], dw=[yr], palette="Spectral11") if plot: outputfile(output_file) show(plot_detector_2d) return data
[docs] def jwst_2d_sat(result_dict, plot=True, output_file='sat2d.html'): """Plot 2d saturation profile Parameters ---------- result_dict : dict Dictionary from pandexo output. If parameter space was run in run_pandexo make sure to restructure the input as a list of dictionaries without they key words that run_pandexo assigns. plot : bool (Optional) True renders plot, Flase does not. Default=True output_file : str (Optional) Default = 'sat2d.html' Return ------ numpy array 2D array of out of transit detector simulation See Also -------- jwst_1d_spec, jwst_1d_bkg, jwst_1d_flux, jwst_1d_snr, jwst_2d_det, jwst_noise """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" #saturation out = result_dict['PandeiaOutTrans'] data = out['2d']['saturation'] xr, yr = data.shape if 'miri' in result_dict['input']['Instrument']: width=300 height=800 else: width=800 height=300 plot_sat_2d = Figure(tools=TOOLS, x_range=[0, yr], y_range=[0, xr], x_axis_label='Pixel', y_axis_label='Spatial', title="Saturation", width=width, height=height) plot_sat_2d.image(image=[data], x=[0], y=[0], dh=[xr], dw=[yr], palette="Spectral11") if plot: outputfile(output_file) show(plot_sat_2d) return data
[docs] def hst_spec(result_dict, plot=True, output_file ='hstspec.html', model = True, output_notebook=True): """Plot 1d spec with error bars for hst Parameters ---------- result_dict : dict Dictionary from pandexo output. plot : bool (Optional) True renders plot, False does not. Default=True model : bool (Optional) Plot model under data. Default=True output_file : str (Optional) Default = 'hstspec.html' output_notebook : bool (Optional) Default true, plots in notebook Return ------ x : numpy array micron y : numpy array 1D spec fp/f* or rp^2/r*^2 e : numpy array 1D rms noise modelx : numpy array micron modely : numpy array 1D spec fp/f* or rp^2/r*^2 See Also -------- hst_time """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" #plot planet spectrum mwave = result_dict['planet_spec']['model_wave'] mspec = result_dict['planet_spec']['model_spec'] binwave = result_dict['planet_spec']['binwave'] binspec = result_dict['planet_spec']['binspec'] error = result_dict['planet_spec']['error'] error = np.zeros(len(binspec))+ error xlims = [result_dict['planet_spec']['wmin'], result_dict['planet_spec']['wmax']] ylims = [np.min(binspec)-2.0*error[0], np.max(binspec)+2.0*error[0]] plot_spectrum = Figure(width=800, height=300, x_range=xlims, y_range=ylims, tools=TOOLS,#responsive=True, x_axis_label='Wavelength [microns]', y_axis_label='Ratio', title="Original Model with Observation") y_err = [] x_err = [] for px, py, yerr in zip(binwave, binspec, error): np.array(x_err.append((px, px))) np.array(y_err.append((py - yerr, py + yerr))) if model: plot_spectrum.line(mwave,mspec, color= "black", alpha = 0.5, line_width = 4) plot_spectrum.circle(binwave,binspec, line_width=3, line_alpha=0.6) plot_spectrum.multi_line(x_err, y_err) if output_notebook & plot: outnotebook() show(plot_spectrum) elif plot: outputfile(output_file) show(plot_spectrum) return binwave, binspec, error, mwave, mspec
[docs] def hst_time(result_dict, plot=True, output_file ='hsttime.html', model = True, output_notebook=True): """Plot earliest and latest start times for hst observation Parameters ---------- result_dict : dict Dictionary from pandexo output. plot : bool (Optional) True renders plot, False does not. Default=True model : bool (Optional) Plot model under data. Default=True output_file : str (Optional) Default = 'hsttime.html' Return ------ obsphase1 : numpy array earliest start time obstr1 : numpy array white light curve obsphase2 : numpy array latest start time obstr2 : numpy array white light curve rms : numpy array 1D rms noise See Also -------- hst_spec """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" #earliest and latest start times obsphase1 = result_dict['calc_start_window']['obsphase1'] obstr1 = result_dict['calc_start_window']['obstr1'] rms = result_dict['calc_start_window']['light_curve_rms'] obsphase2 = result_dict['calc_start_window']['obsphase2'] obstr2 = result_dict['calc_start_window']['obstr2'] phase1 = result_dict['calc_start_window']['phase1'] phase2 = result_dict['calc_start_window']['phase2'] trmodel1 = result_dict['calc_start_window']['trmodel1'] trmodel2 = result_dict['calc_start_window']['trmodel2'] if isinstance(rms, float): rms = np.zeros(len(obsphase1))+rms y_err1 = [] x_err1 = [] for px, py, yerr in zip(obsphase1, obstr1, rms): np.array(x_err1.append((px, px))) np.array(y_err1.append((py - yerr, py + yerr))) y_err2 = [] x_err2 = [] for px, py, yerr in zip(obsphase2, obstr2, rms): np.array(x_err2.append((px, px))) np.array(y_err2.append((py - yerr, py + yerr))) early = Figure(width=400, height=300, tools=TOOLS,#responsive=True, x_axis_label='Orbital Phase', y_axis_label='Flux', title="Earliest Start Time") if model: early.line(phase1, trmodel1, color='black',alpha=0.5, line_width = 4) early.circle(obsphase1, obstr1, line_width=3, line_alpha=0.6) early.multi_line(x_err1, y_err1) late = Figure(width=400, height=300, tools=TOOLS,#responsive=True, x_axis_label='Orbital Phase', y_axis_label='Flux', title="Latest Start Time") if model: late.line(phase2, trmodel2, color='black',alpha=0.5, line_width = 3) late.circle(obsphase2, obstr2, line_width=3, line_alpha=0.6) late.multi_line(x_err2, y_err2) start_time = row(early, late) if output_notebook & plot: outnotebook() show(start_time) elif plot: outputfile(output_file) show(start_time) return obsphase1, obstr1, obsphase2, obstr2,rms
[docs] def hst_simulated_lightcurve(result_dict, plot=True, output_file ='hsttime.html', model = True, output_notebook=True): """Plot simulated HST light curves (in fluece) for earliest and latest start times Parameters ---------- result_dict : dict Dictionary from pandexo output. plot : bool (Optional) True renders plot, False does not. Default=True model : bool (Optional) Plot model under data. Default=True output_file : str (Optional) Default = 'hsttime.html' Return ------ obsphase1 : numpy array earliest start time counts1 : numpy array white light curve in fluence (e/pixel) obsphase2 : numpy array latest start time counts2 : numpy array white light curve in fluence (e/pixel) rms : numpy array 1D rms noise See Also -------- hst_spec """ TOOLS = "pan,wheel_zoom,box_zoom,reset,save" # earliest and latest start times obsphase1 = result_dict['light_curve']['obsphase1'] rms = result_dict['light_curve']['light_curve_rms'] obsphase2 = result_dict['light_curve']['obsphase2'] phase1 = result_dict['light_curve']['phase1'] phase2 = result_dict['light_curve']['phase2'] counts1 = result_dict['light_curve']['counts1'] counts2 = result_dict['light_curve']['counts2'] count_noise = result_dict['light_curve']['count_noise'] ramp_included = result_dict['light_curve']['ramp_included'] model_counts1 = result_dict['light_curve']['model_counts1'] model_counts2 = result_dict['light_curve']['model_counts2'] if isinstance(count_noise, float): rms = np.zeros(len(counts1)) + count_noise y_err1 = [] x_err1 = [] for px, py, yerr in zip(obsphase1, counts1, rms): np.array(x_err1.append((px, px))) np.array(y_err1.append((py - yerr, py + yerr))) y_err2 = [] x_err2 = [] for px, py, yerr in zip(obsphase2, counts2, rms): np.array(x_err2.append((px, px))) np.array(y_err2.append((py - yerr, py + yerr))) if ramp_included: title_description = " (Ramp Included)" else: title_description =" (Ramp Removed)" early = Figure(width=400, height=300, tools=TOOLS,#responsive=True, x_axis_label='Orbital Phase', y_axis_label='Flux [electrons/pixel]', title="Earliest Start Time" + title_description) if model: early.line(phase1, model_counts1, color='black', alpha=0.5, line_width=4) early.circle(obsphase1, counts1, line_width=3, line_alpha=0.6) early.multi_line(x_err1, y_err1) late = Figure(width=400, height=300, tools=TOOLS, # responsive=True, x_axis_label='Orbital Phase', y_axis_label='Flux [electrons/pixel]', title="Latest Start Time" + title_description) if model: late.line(phase2, model_counts2, color='black', alpha=0.5, line_width=3) late.circle(obsphase2, counts2, line_width=3, line_alpha=0.6) late.multi_line(x_err2, y_err2) start_time = row(early, late) if plot: if output_notebook: outnotebook() else: outputfile(output_file) show(start_time) return obsphase1, counts1, obsphase2, counts2, rms