Using Full Output for Diagnostics¶
Sometimes it helps to have a bigger picture of what the full output is doing.
These steps will guide you through how to get out gain more intuition from your runs.
[1]:
#picaso
from picaso import justdoit as jdi
from picaso import justplotit as jpi
jpi.output_notebook()
We will use a cloudy Jupiter again to guide us through the exercise.
[2]:
opa = jdi.opannection(wave_range=[0.3,1])
case1 = jdi.inputs()
case1.phase_angle(0)
case1.gravity(gravity=25, gravity_unit=jdi.u.Unit('m/(s**2)'))
case1.star(opa, 6000,0.0122,4.437)
case1.atmosphere(filename = jdi.jupiter_pt(), delim_whitespace=True)
case1.clouds(filename = jdi.jupiter_cld(), delim_whitespace=True)
/home/nbatalh1/codes/picaso/picaso/justdoit.py:1742: FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead
df = pd.read_csv(filename, **pd_kwargs)
/home/nbatalh1/codes/picaso/picaso/justdoit.py:2936: FutureWarning: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be removed in a future version. Use ``sep='\s+'`` instead
df = pd.read_csv(filename, **pd_kwargs)
Return PICASO
Full Ouput¶
[3]:
df = case1.spectrum(opa, full_output=True) #note the new last key
wno, alb, full_output = df['wavenumber'] , df['albedo'] , df['full_output']
Visualizing Full Output¶
Mixing Ratios¶
[4]:
jpi.show(jpi.mixing_ratio(full_output))
#can also input any key word argument acceptable for bokeh.figure:
#show(jpi.mixing_ratio(full_output, plot_width=500, y_axis_type='linear',y_range=[10,1e-3]))
Cloud Profile¶
Depending on your wavelength grid, you might exceed Jupyter Notebook's
data rage limit. You can fix this by initiating jupyter notebook with a higher data rate limit.
jupyter notebook --NotebookApp.iopub_data_rate_limit=10000000
[5]:
jpi.show(jpi.cloud(full_output))